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Dropping an impurity into a Chern insulator: A polaron view on topological matter
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We investigate the properties of an impurity particle interacting with a Fermi gas in a Chern-insulating state.
The interaction leads to the formation of an exotic polaron, which consists of a coherent superposition of the
topologically trivial impurity and the surrounding topological cloud. We characterize this intriguing topologically
composite object by calculating its transverse (Hall) conductivity, using diagrammatic as well as variational
methods. The “polaronic Hall conductivity,” i.e., the transverse drag exerted by the dressing cloud on the
impurity, is shown to exhibit a sharp jump from zero to a finite value whenever the surrounding cloud enters
a topologically nontrivial state. In this way, the polaron partially inherits the topological properties of the Chern
insulator through genuine interaction effects. This is also analyzed at the microscopic level of wave functions, by
identifying a “composite Berry curvature” for the polaron, which closely mimics the Berry curvature of the Chern
insulator’s band structure. Finally, we discuss how this interplay between topology and many-body correlations
can be studied in cold-atom experiments, using available technologies.
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Introduction. The exploration of topological states of mat-
ter constitutes one of the most active fields in condensed-
matter physics [1–3]. In parallel to the identification of novel
topological properties in single-particle band structures [4–6],
intense efforts are dedicated to the rich interplay of topologi-
cal bands and interparticle interactions [7–20]. In addition to
condensed-matter systems, topological band structures have
also been studied in the context of ultracold gases [21–23].
These atomic systems are particularly well suited to inves-
tigate the role of interactions in topological phases [24–30],
since the interaction strength between neutral atoms can be
easily tuned experimentally [31]. This feature of cold-atom
systems has led to various fundamental discoveries [32–34];
in particular, ultracold gases have deepened our understand-
ing of how mobile impurities behave within ultracold Fermi
[35–38] or Bose [39,40] gases.

Here, we show that impurity physics provides a promising
framework to explore interacting topological systems in a
realistic and controlled setting. Specifically, we consider an
impurity moving in a honeycomb lattice and interacting with
a gas of “majority” particles forming a Chern insulator. The
interaction leads to the formation of a polaron consisting of a
(topologically trivial) impurity dressed by a cloud of majority
particles forming a topological phase. Using both a diagram-
matic and a variational approach, we calculate the transverse
(Hall) conductivity of this intriguing composite object, and
show that it partially reflects the Hall-type properties of the
majority particles. Physically, this is due to the drag exerted
by the dressing cloud on the impurity, and it is thus a genuine
interaction effect. At the microscopic level, we identify a
“composite Berry curvature” for the polaron and show that
it closely mimics the Berry curvature of the underlying Chern
insulator’s band structure. Our developments are reminiscent
of a recently proposed interferometric scheme, which involves

mobile impurities bound to quasiparticles in fractional quan-
tum Hall states [41].

System. Consider a mobile impurity, denoted as a ↓ parti-
cle, immersed in a gas of fermionic majority (spin ↑) particles.
Both the impurity and the majority particles reside in a hon-
eycomb lattice with nearest-neighbor hopping. In addition, the
majority particles experience next-nearest-neighbor hopping,
which breaks time-reversal symmetry, and a broken inversion
symmetry given by an energy offset between neighboring
sites [see Fig. 1(a)]. Thus, the Hamiltonian for the impurity
corresponds to the usual nearest-neighbor tight-binding model
for graphene [42], whereas the Hamiltonian for the majority
particles corresponds to the Haldane model [43],

Ĥ0 = −t1
∑

σ=↑,↓

∑
〈i, j〉

ĉ†
iAσ ĉ jBσ − t2

∑
〈〈i, j〉〉

eiφi j ĉ†
iA↑ĉ jB↑ + H.c.

+�
∑

i

(
ĉ†

iA↑ĉiA↑ − ĉ†
iB↑ĉiB↑

)
=

∑
kασ

εσα (k)γ̂ †
kασ γ̂kασ .

(1)

Here, ĉ†
is σ creates an impurity/majority particle for σ =↓,↑

on the s = A/B site in unit cell i, and t1 is the nearest-neighbor
hopping matrix element, which is taken to be the same for
both kinds of particles. In the Haldane model [43], the matrix
elements for the next-nearest-neighbor hopping of the major-
ity particles have strength t2 and phase φi j ; we have φi j =φ,
or φi j =−φ, depending on whether the next-nearest hopping
process is performed in a clockwise or anticlockwise fashion,
respectively. The staggered sublattice potential � splits the
energy of the A and B sites. The second line of Eq. (1) displays
the diagonalized Hamiltonian, and introduces the operator
γ̂

†
kασ , which creates a particle in the single-particle eigenstate

of the Haldane (σ =↑) or graphene (σ =↓) Hamiltonian, in
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FIG. 1. (a) Both the impurity and majority particles live in a
honeycomb lattice with nearest-neighbor hopping with strength t1.
The majority particles in addition experience next-nearest-neighbor
hopping with strength t2 and phase φi j , and an energy offset between
the triangular sublattices of A and B sites. (b) The phase diagram of
the Haldane insulator for the majority atoms. Here, �0 = 33/2t2.

band α= (1, 2) and with quasimomentum k within the first
Brillouin zone (BZ); the energy of this state is εσα (k). In the
following, we assume that the majority particles fill the lowest
band completely in the absence of interactions so that they
form a topological band insulator. The well-known topologi-
cal phase diagram of the Haldane model, characterized by the
Chern number C, is shown in Fig. 1(b).

The impurity interacts with the majority particles via the
contact potential

Ĥint = g
∑

i

∑
s=A,B

ĉ†
is↑ĉ†

is↓ĉis↓ĉis↑

= g

N

∑
kk′q

αβα′β′

W αβ

α′β ′ (k, k′, q)γ̂ †
k+qα↑γ̂

†
k′−qα′↓γ̂k′β ′↓γ̂kβ↑,

(2)

where N is the number of unit cells in the lattice, and
W αβ

α′β ′ (k, k′, q) gives the strength of the scattering of a major-
ity/impurity particle in band β/β ′ with momentum k/k′ into a
majority/impurity particle in band α/α′ with momentum k +
q/k′ − q. A detailed expression for W αβ

α′β ′ (k, k′, q) is given in
the Supplemental Material [44].

The polaron. The interaction Ĥint results in the creation of
a quasiparticle called the Fermi polaron, which consists of the
impurity “dressed” by a cloud of fermionic majority atoms.
Such polarons have been studied intensely in the absence of
a lattice using cold-atom systems [35–38,45]. The polaron
ground-state wave function is well approximated by the so-
called Chevy ansatz [46]

|ψ0〉 =
⎛
⎝√

Z0 +
∑

Q,q,α

MQ,q,αγ̂
†
q2↑γ̂

†
Q−qα↓γ̂Q1↑γ̂01↓

⎞
⎠|ϕ0〉

≡ √
Z0|ϕ0〉 +

∑
Q,q,α

MQ,q,α|ϕQ,q,α〉, (3)

where Z0 is the quasiparticle residue while |ϕ0〉 and |ϕQ,q,α〉
are the noninteracting ground and excited states, respectively.
The coefficients

√
Z0 and MQ,q,α are obtained by minimizing

〈Ĥ0 + Ĥint − E〉, as explained in the Supplemental Material
[44]. The second term in Eq. (3) describes the dressing of the

impurity by particle-hole excitations of the majority particles
from the valence to the conduction band while exciting the
impurity to band α. Since the Haldane bands have nontrivial
topological properties for certain values of (φ,�), the polaron
is a coherent mixture of a topologically trivial impurity sur-
rounded by a topological dressing cloud of majority particles.
This raises the fascinating question of whether the polaron
inherits some the topological properties of its dressing cloud
and how one can characterize this phenomenon. We stress that
the polarons stem from the genuine interacting nature of our
composite system, and that such objects cannot be realized by
simply connecting two noninteracting layers through hopping.

External force and transverse current. We do not expect
the topological properties of the polaron to be reflected in
quantities such as its energy. Inspired by the famous Thouless-
Kohmoto-Nightingale-den Nijs (TKNN) relation, linking the
transverse (Hall) conductivity to the Chern number [47], we
instead examine the transverse response of the polaron to an
external force. The central question concerns the mechanism
by which the quantized Hall response of the majority induces
a polaronic Hall effect through interactions.

In order to measure the response of the polaron (and not
that of the bare impurity only), we take the force F(r) =
−∇V (r) to act on both the impurity and the majority particles,
i.e., on both components of the polaron. The perturbation
corresponding to the force is then

Ĥ ′(t ) =
∫

d2rV (r)ρ̂(r, t ), (4)

where ρ̂ = ρ̂↑ + ρ̂↓ is the total density of the system. For
concreteness, we consider a uniform force Fy in the y direc-
tion, i.e., F(r)=−Fyey. The transverse Hall conductivity of
the polaron σ P

xy then determines the induced current density
along the x direction, according to 〈 ĵx↓〉 = σ P

xy · (−Fy). The
homogeneous current densities of the two components are
given by the operators

ĵσ = 1

N

∑
k

�̂J (k) = 1

N

∑
k

∑
αβ

γ̂
†
kβσ

�Jσβα (k)γ̂kασ , (5)

where the quantity �Jσβα (k), giving the current operator in
the eigenbasis of the graphene and Haldane Hamiltonians, is
given in the Supplemental Material [44].

The transverse current of the polaron due to the force
Eq. (4) can be written in terms of the current-current corre-
lation function within linear response. As shown in Ref. [44],
we have

σ P
xy = lim

ω→0
−Pxy(ω)

iω
, (6)

where Pxy(ω) is the Fourier transform of the current-
current correlation function Pxy(t − t ′) = −iNθ (t −
t ′)〈ψ0|[ ĵx↓(t ), ĵy↑(t ′) + ĵy↓(t ′)]|ψ0〉, with θ (t ) the Heaviside
function. As we will show below, the transverse conductivity
in Eq. (6) encodes the topological properties of the impurity
dressed by the topological cloud in Eq. (3). Besides, the
longitudinal transport exhibits Bloch oscillations of the
polaron [48].

Composite Berry curvature. The Berry curvature is an
essential ingredient for understanding noninteracting Chern
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insulators [1–3]. Likewise, the Lehmann representation can
be used to express the transverse conductivity of the polaron

in Eq. (6) as an integral over a “composite” Berry curvature,
σ P

xy = ∑
Q B↓↑(Q), where [44]

Bσσ ′ (Q) = −i
∑

k1,k2,q

∑
α,β,α′,β ′,α′′

〈ψ0|Ĵ x
σαβ (k1)|ψQ,q,α′′ 〉〈ψQ,q,α′′ |Ĵ y

σ ′α′β ′ (k2)|ψ0〉 − x ↔ y

(E0 − EQ,q)2
. (7)

Here, |ψQ,q,α〉 is an interacting excited state of the polaron
with energy EQ,q, which is adiabatically connected to the
noninteracting excited state |ϕQ,q,α〉 defined in Eq. (3). Im-
portantly, the quantity Bσσ ′ (Q), which describes the Berry
curvature of an excitation involving spins σ and σ ′ with
total momentum Q, corresponds to the Berry curvature of
the polaron in Eq. (3) when setting σ =↑ and σ ′ =↓. This
new quantity emerges as a consequence of the combination
of the many-body nature of the polaron and the underlying
topological band structure of the majority particles. It is easy
to show that B↑↑(Q), on the other hand, recovers the usual
expression for the Berry curvature of the Haldane model [44].

Diagrammatic analysis. We now use a diagrammatic anal-
ysis to calculate the transverse conductivity Eq. (6). This
allows us to include the interaction in a systematic way using

perturbation theory in the coupling strength g. The calculation
is equivalent to using the many-body Chevy ansatz in Eq. (3)
to evaluate the composite Berry curvature in Eq. (7) up to
second order in g. The current-current correlation function
is illustrated diagrammatically in Fig. 2. We assume zero
temperature so that the polaron is initially in its ground state
|ψ0〉 with zero momentum. Since the Berry curvature vanishes
for the energy bands of graphene, it follows that σ P

xy = 0 when
there are no interactions. The first-order diagrams also give no
contribution to the transverse conductivity, as they correspond
to a simple Hartree energy shift of the impurity energy. The
first nonvanishing contribution to the transverse conductivity
is therefore second order in g, and it is given by the diagrams
shown in the lower panel of Fig. 2. They correspond to the
contribution

Pxy(ω) = g2
∑

k1k2k3

J x
↓β ′α′ (k2)G↓β ′ (k2 + ω)G↓α′ (k2)G↓κ ′ (k3 + k2)

[
W βκ

κ ′β ′ (k1 + k3, k2,−k3)W κα
α′κ ′ (k1, k3 + k2, k3)G↑κ (k1 + k3)

+W βκ

α′κ ′ (k1 − k3, k3 + k2, k3)W κα
κ ′β ′ (k1, k2,−k3)G↑κ (k1 − k3 + ω)

]
G↑α (k1)G↑β (k1 + ω)J y

↑βα (k1), (8)

where
∑

k ≡ T
∑

ωn

∑
k is a shorthand notation for a summa-

tion over a Matsubara frequency and integration over a two-
dimensional (2D) momentum k inside the BZ, k ≡ (k, iωn),
and there is a summation over repeated band indices. The
noninteracting Green’s function for a σ particle in band α is
Gσα (k)−1 = iωn − εσα (k). In Ref. [44], we provide all first-
and second-order diagrams for the current-current correlation
function and evaluate the three Matsubara sums in Eq. (8)
analytically. As usual, we add a positive infinitesimal part
to the frequency ω to get the retarded correlation function
Pxy(ω).

FIG. 2. Top: Diagrammatic representation of the transverse con-
ductivity of the polaron. Bottom: Second-order nonzero diagrams.
Black solid/red dashed lines denote the impurity/majority σ =↓, ↑
Green’s function and wavy lines the interaction.

Note that our second-order calculation is conserving [49],
which is a major challenge for arbitrary interaction strengths
[50].

The fact that the first nonzero contribution to the transverse
conductivity is proportional to g2 can be understood as fol-
lows. The transverse current of the polaron is caused by the
drag exerted by its dressing cloud. This drag is proportional
to the scattering rate between the impurity and the majority
particles, which again is proportional to the scattering cross
section scaling as g2.

Results. We now discuss our main results shown in Figs. 3
and 4. The transverse conductivity of the ground-state polaron
σ P

xy is obtained by evaluating the diagrammatic expression
in Eq. (8) numerically, assuming that the impurity remains
in the lower band. Figure 3(a) shows that the transverse
conductivity of the polaron has the same sign as that of
the majority particles, as given by their Chern number C.
Moreover, σ P

xy vanishes when the majority particles are in
a trivial phase (C=0). Thus, the polaron inherits the Hall-
type transport properties of its dressing cloud, which is
an effect solely due to interactions and which is deeply
rooted in the topology of the underlying Chern insulator;
this reflects the transverse drag that the majority particles
impose on the impurity.

Macroscopically, one could anticipate that σ P
xy =0 when-

ever the majority particles are in the trivial phase (with
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FIG. 3. (a) Transverse conductivity σ P
xy of the polaron in units of g2/Ng2

0 with g0 = (2πa)2/(3
√

3/2)t1, as a function of φ and � for
t2 = 0.1t1. The solid lines give the boundaries � = ±33/2t2 sin φ for the topological phase of the majority atoms. (b) and (c) depict σ P

xy for
fixed values of (t2/t1, φ) and (t2/t1, �/�0) respectively.

no net transverse current). However, this is not so obvious
microscopically, as the individual majority particles exhibit
a transverse motion also in the trivial phase due to the
nonzero Berry curvature of the Haldane band [51,52]; since
the impurity-majority scattering rate depends on the quantum
states involved, this could lead to a net transverse drag on the
impurity. We attribute the vanishing of σ P

xy to the fact that,
in the trivial phase, one can use a single gauge to describe
the majority particles, and hence to the polaron eigenstates in
Eq. (7).

While the transverse conductivity of the polaron is inti-
mately related to the topological properties of its dressing
cloud, it is not quantized: As shown in Figs. 3(b) and 3(c),
it varies slightly as φ and � are changed, leading to a saddle-
point-like surface. This reflects the composite many-body na-
ture of the polaron, whose transport and geometric properties
arise as a combination of the topological properties associ-
ated with the majority and a series of nonuniversal features

FIG. 4. (i)–(iii) The composite Berry curvature B↓↑(Q) of the
polaron for (i) (φ,�) = (−π/2, 0), (ii) (φ,�) = (−π/2,�0/3),
and (iii) (φ,�) = (−π/2, 5�0/3). (iv)–(vi) below show the cor-
responding Berry curvature B↑↑(Q) for the majority for the same
values of (φ,�).

(e.g., interactions). To further investigate the geometric prop-
erties of the polaron, we present its composite Berry curvature
B↓↑(Q), and the corresponding Berry curvature B↑↑(Q) of
the populated Haldane band in Figs. 4(i)–4(vi), for various
values of (φ,�). Figures 4(i) and 4(ii) and Figs. 4(iv) and
4(v) correspond to the topological phase with C = −1, and
Figs. 4(iii) and 4(vi) correspond to the topologically trivial
phase. One finds that the composite Berry curvature B↓↑(Q)
closely mimics the Berry curvature B↑↑(Q) of the Haldane
band, and that it inherits all its asymmetric features. This
shows that the geometric properties of the Haldane model are
faithfully mapped onto the polaron, at the microscopic level
of the polaron wave function. We point out that the precise
shape of B↓↑(Q) differs from B↑↑(Q), which indicates how
the polaron Hall conductivity deviates from the quantized
value experienced by the majority.

A nonzero temperature will reduce or smoothen the jump
of the polaron’s transverse conductivity at the topological
transition, due to the thermal population of the excited band,
but a well-defined feature should remain visible as long
as the temperature is well below the band gap. To quan-
tify more precisely this effect, our diagrammatic formalism
may be extended by means of finite-temperature Green’s
functions.

Concluding remarks. The intricate interplay between
many-body physics and topology discussed in this Rapid
Communication can be studied using present cold-atom
technology. Polarons have been systematically investigated
by several groups [35–40]. Moreover, the Haldane model
has been realized and the Berry curvature of its energy
bands observed, using optical lattices [53–55]. The Hall
conductivity of neutral atoms can be measured through
transverse drift dynamics [56–61] or via circular dichro-
ism [62]. We estimate the transverse velocity vx↓ of the
impurity using jx↓ = n↓vx↓ = σ P

xyFy, where n↓ ∼ 1/Na2 is
the impurity density with a the lattice constant. From this,
the transverse displacement of the impurity after time τ

is δx↓ = σ P
xyFyτ/n↓ ≈ 0.25(n↑g/6t1)2a2Fyτ , where we have

used a typical value σ P
xy  0.8g2/Ng2

0 (see Fig. 3). Hence,
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for typical experimental times τ ≈ 20–50π/t1 and Fy ≈
0.2–0.3t1/a [53], the transverse impurity displacement is
significant, i.e., δx↓ ≈ 1–5a, even when the coupling g is
small compared to the “graphene bandwidth” 6t1, so that our
perturbative calculation is reliable. In typical polaron experi-
ments, the concentration of impurities is typically �20%. For
such concentrations, the effects of polaron-polaron interac-
tions are negligible due to the incompressibility of the Fermi
gas [38].

We showed that the transverse conductivity of the polaron
scales as g2, when the force acts on both the impurity and its
dressing cloud. In fact, our result also holds when the force
acts on the dressing cloud only. If instead the force acts only
on the impurity, we expect the transverse conductivity to scale
as g4. First, the longitudinal motion of the impurity due to
the external force induces a longitudinal drag on the majority

particles, which scales with the scattering cross section ∝g2.
The Berry curvature of the Haldane bands will then cause a
transverse drift of the majority particles [51,52], which causes
a drag back on the impurity scaling with g2, giving a total g4

scaling. For strong coupling, we expect the transverse current
to saturate when the impurity binds a single Haldane particle
to form a dimer state.

Our results open up the exciting perspective of studying
interacting topological systems using quantum impurities in
atomic gases as a highly controllable probe.
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